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1. Sturm-Liouville Equations.

Consider the Sturm-Liouville eigenvalue problem .

(p(x,2)u’)’ + q(x,A)u =0, for O S x <1,

(1.1) aO(A)u(O) + BO(A)u'(O) o,

al(k)u(l) + Bl(l)u'(l) 0.

The main objective of this paper is to present a shooting method for the

oy

eigenvalues and eigenfunctions of (1.1), and to prove its validity. The
method is based on oscillation, and is related to the critical (or character-
istic) lengths in the invariant imbedding method. However, a simple counting
of critical lengths does not produce a correct algorithm (for general, sepa-
rated boundary conditions). We shall discuss this in detail in §6. Our
method can aim for the nth eigenvalue without consideration of other elgen- ;
values. It provides an a-posteriori error estimate for the approximate eigen- A
value. The method 1s a generalizatlion of that used by Porter and Reiss [13],
[14], for the problem -
’ ! 2

+ 1 - A u=0, for 0 s x s d,

(1.2)  {|(w-2u®(x))2 ()% (w-al(x))?

u

u(0) = 0 = u’'(d),

which arises in acoustics. (Here, Cix) 1s a given function.)

The shooting method will be described in §2, and its validity will be T
proved using the Sturm comparison and oscillation theorems. The problem will dl :
be discretized in §3, and another verification of the shooting method will be {J
given in §4, by applylng Sturm sequences to the discrete problem. This pro- ‘;‘t““*““,

S R S y

cess of "taking the limit" of a numerical method (applied to a discretlization)
s |

is sometimes referred to as finding a "closure of an algorithm" (see
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Babuska [1]). Such closures give insight into the numerical method, and often

lead to more flexible and adaptable procedures than the finite difference or
finite element method. An example of this is the double sweep method (see,
for example, Babuska, Prager and Vitasek [4), Babuska and Majer [2], Keller
and Lentini (12]). 1In §5, analogues of the Sturm comparison, oscillation and
separation theorems will be given for the discrete problem. In §6, we provide
a cautionary note concerning a related shooting method which can fail,
although its appearance of validity is seductive.

We shall need to make certain assumptions about the coefficient functions
in (1.1). As indicated below, these occur in three categorlies. The standard
assumptions will always be implicitly assumed without mention. The monotoni-
city and limit assumptions occur in the Sturm comparison and oscillation
theorems. They will be explicitly assumed when needed. In the following, A

will vary in an interval (AI’AZ)' We do not exclude the possibilities

A1=—co,A2=

Standard Assumptions

(S1) p(x,A) 9 —b(x,A) and q(x,A) are continuous functions on

> 9x
[O,l]x(Al,Az).

(s2) p(x,A) 2k >0, for 0SS x<S1, A1 <A< A2.

(S3) aO(A), BO(A), al(A), BI(A) are continuous on (AI,A2).
(s4) ai(h)2-+Bl(A)2 20, for 1 =0,1 and A1 <A< A2.
(*)

(S5) For 1 = 0,1, either Bi(A) =0 or Bl(h) >0, for A1 <A< A2.

Monotonicity Assumptions
(M1) For each x, q(x,A) 1is a strictly increasing function of A.

(M2) For each x, p(x,A) 1is a nonincreasing function of A.

g A, = A, in (L3), then we assume that (S5) is valid for A, S A <A,

iy \J'\.{‘\f_- ‘.J‘_J‘ .r_.. ,\J'_ s r\.r\- \.-r,‘.r\ T ‘-\I\- s ,_- AU V\d‘.‘-ﬁ_- : '.."\"w_ o\ a,- .(.
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z
(M3) 1If BO(A) 0, then p(O.A)E;TXT is a nondecreasing function.

(Ma) 1If BI(A) # 0, then p(O,A)%%%%% s a nonincreasing function.

We shall use the following notation:

»
p (A) max p(x,A), p,(A) = min p(x,A),
0sxs<1 Osx<1

»
q (A) max q(x,A), q,(A) = min q(x,A).
0sx<1 0sx<1

*
Note that p (A) 2 p,(A) 2 k > 0, by assumption (S2).

Limit Assumptions
qe(A)
(L1) lim —
A= (A)
Ay P,
q (A) _
Py (A)

(L2) lim
A»AI

(L3) There is a number A+ in (A1'A2)' so that aO(A+)BO(A+) <0,

L
al(k+)Bl(A+) 20, and q (A+) < 0. (If the coefficient functions in

(1.1) can be extended continuously to A A we may take A+ = A

1’ 1

Note that assumption (L3) implies that for A A,» the operator in (1.1) is

negative semidefinite.

Remark. In the acoustics problem (1.2), q(x,A) 1is a decreasing function of
A, and p(x,A) is an increasing function of A, if w > 0, uo(x) >0 and
w-au’(x) > 0. However, the shooting method is valid if the words
"increasing” and "decreasing" are interchanged in assumptions (M1) - (M4),
while A1 and Az are interchanged in assumptions (L1) - (L3).

We shall conclude this section by recalling the Sturm comparison and

oscillation theorems. These theorems (with somewhat different notation) can

be found in Bocher [5, Chap. 3] and Ince [10, Chap. 10]. The comparison

(')If A+ = A1 in (L3), then we assume that (S5) is valid for A1 <AL A2'
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theorems deal with the initial value problem obtained from (1.1) by omitting

the boundary condition at x = 1. This can be formulated as follows:

) (p(x,A),u’)’ + qlx,A)u=0, for O < x<S1,
' (1.4)
u(0) = BO(A). u’(0) = -ao(k).
Let u{(x,A) denote the solution of (1.4). Note that (for fixed A) the

zeros of u(x,A) are simple, since (1.4) is a second order differential

equation.

Theorem A (First Comparison Theorem). Suppose that (1.4) satisfies the

A monotonicity assumptions (Mi), (M2), and (M3). Then, for Al < AZ’ u(x,Az)
»

< has at least as many zeros as u(x,Al) in the interval 0 < x €1, and the
) .th th

) i zero of u(x,Az) is less than the i zero of u(x,Al).

Theorem B (Second Comparison Theorem). Suppose that (1.4) satisfies the

monotonicity assumptions (M1), (M2), and (M3). Let O < x. S 1, and suppose

0
y that u(x.,A) #0 for A, <A <A Then p(x,, u (x0,2) yg 4 strictly
” 0’ 1 2 utx LA) Y
5 decreasing function of A 1in the interval Al <AL Az.
5 Remark 1. The comparison theorems are usually stated in terms of two differ-
ential equations:
r z ’ -
(po(x)uo) + qo(x)u0 =0, for 0 <Sxs1,
(1.5)
uO(O) = BO, uO(O) = -,
and
g
(pl(x)ui)' + ql(x)u1 =0, for 0 <x <1,
(1.8)

X ot utuVa

ul(O) = Bl’ ui(O) = -y,

where it assumed that
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(1.7) pO(X) > pI(X)’ qo(x) < ql(X) and pO(O)gg 4 Pl(O)g%.

(For the second comparison theorem, we also assume that uo(x) and ul(x)
have the same number of zeros in the interval (O,XO), and uo(xo) 2 0,

ul(xo) # 0.) However, the equations (1.5) and (1.6) can be embedded in a

continuous family of equations:

(p(x,A)u’)’ + q(x,AJu=0, for O S x <1,
(1.8)

u(0) = B(A), u' (0) = -a(A),

which satisfies the monotonicity assumptions (M1), (M2), and (M3) for

0 €A <1, and such that p(x,0) = po(x). q(x,0) = qo(x), p(x,1) = pl(x).

0
q(x,1) = ql(x), %%5% = %% and %%%% = %f. We can take

p(x,A) = (I-A)po(x)-+Ap1(x), qlx,A) = (l—k)qo(x)-+hq1(x), and choose «a(A),

B(A) so that

alA)

B0, )35y = (17A)py (0132 +Ap1(0)a1

B1

Namely, take a(A) = (1-A)p0(0)a061-+Ap1(0)a130, and B(A) = Boﬁlp(O,A). It

then follows that the solution u(x,A) of (1.8) satisfies

(1.9) u(x,0) = couo(x), ul(x,1) = clul(X).

where o = pO(O)Bl' ¢y = pl(O)BO' Thus u(x,0) and uo(x) have the same
number of zeros in (0,1), as do wu(x,1) and ul(x). Also

u’' (x,0) _ ui(x)

= <
p(x,O)*GT§TTT pl(X)G;TQT’ for 0 £ x £ 1. We shall feel free to use elther

form of the comparison theorems.

Remark 2. If the strict inequality qo(x) < ql(x) is changed to
qo(x) < ql(x) in (1.7), then the conclusions are changed analogously: the

first comparison theorem concludes ihatl ul(x) has at leaslL as many zeros as
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uo(x) in the interval 0 < x 1, and the 1th zero of ul(x) is less than
or equal to the ith zero of uo(x). The second comparison thearem concludes

ué(xo) ui(xo)

>
that pl(X)GaT§ST 2 pl(XO)GIT§aT'

Theorem C (Oscillation Theorem). Suppose that (1.1) satisfies the monotoni- d
city assumptions (M1) - (M4) and the limit assumption (L1). Then the elgen-

values of (1.1) form an infinite, increasing sequence A_ < A < A < ...,
m m+1 m+1

which tends to A2. The eigenfunction wk(x), corresponding to Ak’ has

exactly k-1 =zeros in the interval (0,1). Furthermore, suppose that (1.1) §

satisfies either the limit assumption (L2) or (L3). Then the sequence of

eigenvalues begins with Al. whose eigenfunction wl(x) has no zeros in

- (0,1).
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2. A Shooting Method for Elgenvalues and Eigenfunctions.

;‘ th

‘ An eigenvalue of (1.1) will be denoted Ak' and called the k eigen-
value, if its corresponding eigenfunction wk(x) has exactly k-1 zeros
} in (0,1). This notation has already been used in the Sturm osclllation
o
. theorem, which gives sufficient conditions for Ak to exist for large k, or
» for all k 2 1.
-
Xy Definition 2.1. For a given A in (Al'AZ)‘ let u(x,A) denote the solu-
<,
L4
Y tion of the initial value problem (1.4). Furthermore, let
5 (1) NO(A) be the number of zeros of wu(x,A) in (0,1),
>
'-‘ -
2: (2) u(a) = al(A)u(l,A)4-BI(A)u’(1,A).
“ (3) o(A) = 0 |if u(l,A)B(A) >0 or uEA) =
N 1 if u(1,A)u{(r) €0 and u(r) = 0,
L (4) N(x) = N_(1) +o(r).
- Remark. In the above formulation, N(A) 1is the number of zeros of u(x,A)
N in (0,1), with a correction which depends on the boundary condition at
" x =1. If Bl(A) 2 0, an equivalent formulation is: N(X) = MO(A)-+p(A).
1
b
:‘ where M (A) 1is the number of zeros of wu(x,A) in (0,1], and
’ o
v
b(A) = o if u(1,A)B(A) 20
. 1 if u(1,A)u(r) < 0.
f The shooting method will use the oscillation counter N(A) 1in an essen-
‘ tial way. The following theorem gives the main properties of N(A).
28
“~
o
RS
2
P
~
l.

L4
~

N
v

N B I Y T I T e i S L BN S S S S S \ YRS S R I A R RO
M CPCN AN ATI N A NTIEN AN D G O S et S SO A N ST YL Vs Sy .....r..r}‘



o T A \‘ - il ; - ; - " -, "." ‘f"'Y'VA 'r‘;.\r.'v"._ « - - 1"-"—--""-‘“ .

X

}
b
k Theorem 2.1 (Shooting Theorem). Suppose that (1.1) satisfies the monotoni-

(¥
by
city assumptions (M1) - (M4). Let A’ < A” be numbers in (Al,Az)(q
t +
! Then: '
)
! (1) The interval [A’,A”) contains exactly N(A”)-N(A’) eigenvalues of ‘
(1.1). ‘

X
= "y = = "
2 (2) If N(A%) J < k = N(A”), then the eigenvalues AJ+1'AJ+2""’Ak

§ d
. ’ < ” -
N exist, and A’ < AJ+1 < Aj+2 < ... < Ak < A“.
. If (1.1) also satisfies either the limit assumption (L2) or (L3) then
o (3) For A <A <A, (1.1) has exactly N(A) eigenvalues in the interval
N (*%)

v (A, 2)
ﬂ: The proof of this theorem is closely intertwined with the proof of the
'.
' Sturm oscillation theorem. We shall begin with a short discussion and two

lemmas, which will lead to the proof of the theorem.
Let u{(x,A) be the solution of the initial value problem (1.4). Sturm’'s

first comparison theorem states that, as A lIncreases, u(x,A) does not lose

- ARNRRN . 50

zeros. It may acquire new zeros, which first appear at the endpoint x =1,

:' and move toward x = 0. Suppose that the kth zero appears when A = Hy
AN
L R
. The pu form an increasing sequence u < pu < ... (possibly a finite, or .
o k m m+1 -
-\‘ .
even empty sequence). The solution u(x,A) has exactly k-1 zeros in
-_: <
':| (0,1), for Mg <A< My (assuming that Mg and e exist). The second ;
S . . u’ (1,1) a ‘
;: comparison theorem implies that p(l.A)GTTTXT— is a strictly decreasing func
-
tion for My _q <A< My - Clearly, this function decreases from o to -o.
;? “) If the coefficient functions in (1.1) can be extended continuously to
. A= Al' then A’ may be taken in [AI'AZ)'
“*) The interval [AI,A) in conclusion (3) may be replaced by (AI.A) unless
f A, = Al = Al in asssumption (L3). See the remark after Lemma 2.2, below.
A
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[)
X (A)
! On the other hand, the monotonicity assumption (M4) states that (1,7\)0‘1
Yy p P ETTXT

is a nonincreasing function (assuming that Bl(A) # 0), so that -p(l'A)E_TXT
1

is a nondecreasing function. Therefore there is a unique number Ak'

u'(1,a) - _ a;(A)
! TN K < M A p(l,A)T———)—u i = p(l.A)B—-(—Yl , or

, @, ()ul1,2) +8 (Mu’(1,3) = 0. Thus A = A 1is the k*P eigenvalue of

<A such that for A =

(1.1).

Note that if BI(A) =0, then A My is the kth eigenvalue. In

k
this case o(A) is always zero, and N(A) = NO(A). Thus N(A) = k-1, for

. My _q <A £ uk.
H Lemma 2.1. Suppose that (1.1) satisfles the monotonicity assumptions
. (M) - (M), and B,(A) £ 0. Then N(A) =k-1 for m _, <ASA, and
N(A) = k for A <A S .
L Proof. Because pl(1 A)u'(l’k) is a strictly decreasing function in the
_— SESTEWY)
! . _ a1(7\)
interval Mg € A< My and -p(1, A)§TTXT is a nondecreasing function, we
"\ u’(l.l) _ al( )
:' see that p(l,h)m > -p(1, A)——ﬁ for “k*‘l < AKX Ak, and
A u (1,1) a1 (A)
: p(l’A)GTTTXT_ < -p(1, A)——T—Y for Ak <A< My This implies that
4 B, (Mu(1,A) (e, (Du(1,2) + B, (A (1,0)] > 0 for p_, <A <A, and
Bl(h)u(l,A)[al(A)u(l,A)-*Bl(l)u’(l,h)] < 0 for Ak <A< M- Recalling that
Bl(l) >0 and u(A) = al(A)u(l,A)-*BI(A)u’(l.A), we see that
s u(1,)u(d) > 0 for w _, <A <A, and u(l,Au(A) <0 for A <A <.
d
z Referring to Definition 2.1, we see that ¢(A) = 0 for Byeq < A< Ak’ and
‘ (A} =1 for Ak <A< Hy - Since NO(A) = k-1 for M1 <A S My and
; N(A) = N (A) +o(2), it follows that N(A) = k-1 for m _, <A sA, and
3 N(A) = k for Ak <A< uk. Q.E.D.
%,
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Lemma 2.2.

(1) If (1.1) satisfies the monotonicity assumptions (M3), (M4) and the
limit assumption (L2}, then N(A) = 0, for A near Al'
(2) If (1.1) satisfies the limit assumption (L3), then N(a,) =

Proof. (1) We shall use the first and second comparison theorems to compare

the equations

(p(x,2),u’)’ + q(x,A)Ju=0, for O S x S 1,

(2.1)

u(0) = BO(A), u’(0) = —aO(A).
and

(Pa(A)V')’ + q(A)V =0, for 0%x51,

(2.2)

v(0) = B(A), v'(0) = -q,
where
(2.3) a = p(O,AO)aO(AO) B(A) = p.(A)BO(A ).

Here, AO is a fixed number in (AI’AZ)’ and A1 <A< AO' (See (1.3) for

» L ]
the notation p,(A) and q (A).) Note that p(x,A) 2 p,(A), q(x,A) < q (A},

and by monotonicity assumption (M3),

‘xO(A) (Xo(lo) = p(o,ho)ao(lo) = [+ 4
p(O A)TY (O A )7—‘-)- (A) pO(A)Bo(AJ)— (A)B—(A—)
Therefore the comparison theorems apply (as in Remark 2 after Theorem B in
§1). Thus, u(x) does not have more zeros than v(x) in (0,1], and
u'(1) | p,(K)v (1)

> ———, 1if u(x) and v(x) have the same number of zeros
u(l) v(1)

in (0,1) and wu(1) =0, v(1) # 0. (We are sometimes suppressing the A,

p(1,2)—5=

and denoting u(x,A) = u(x), v(x,A) = v(x).)

The limit assumptlion (L2) states that 1lim ——%ﬁ% -w. Therefore, for

A*A
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q (A) 2 q (A) J
A = - = = - =
. near Al, E:TXT s, where s = s(A) E:TXT’ and ;ix s(A) ]
- 1 '
Equation (2.2) is equivalent to
§ , |
. v’ - s v=0 o
) (2.4) 3
' v(0) = B, v/ (0) = -a, A

whose solution is

N (2.5) v=_g coshsx-g sinh sx. N

3 Recall that either B.(A) =0 or B.(A) >0. If B.(A) =0, then
0 0 0

",
,f B(A) = p.(A)BO(AO) =0, and « = p(O,AO)a(AO) # 0. In this case ¢
> ;
> \ =-g sinhsx has no zeros in (0,1], so u doesn’'t have any zeros there .
N either. 1If BO(A) >0, then B> 0. In fact, B 1s bounded away from O, 3
b because the standard assumption (S2) implies that p,(A) 2 k > 0, so 3
b {
i (]
n B(A) = p,(A)By(Ay) 2 kBy(A)) > 0. Since coshsx > sinhsx, and s—w as
’ A—»Al, this shows that v =B coshsx-g sinhsx > 0, when A 1is near
J
[ A,. Again, this implies that u has no zeros in (0,1]. Thus we have shown
i‘ i
«
" that for A near A, N (2) =0 (and u(1,2) 20, v(1,2) #0).
[ We shall now consider o(A). If Bl(A) = 0, then o(A) =0 by defini- ’
5 tion. Therefore we may assume Bl(k) > 0.
> y
A '
v/(1,A) _ B tanh s - (a/s)
d p"‘(”vil,ﬂ - (MS[B - (a/s) tanh sj°
N ;
b, -
N v/(1,A) .
N Recalling that p,(A) 2 k > 0, it is clear that p,()t)v - —© s R
5 u’ (1,2) v’ (1,2) ;
k—aAl. Since p(l,A)—TT—XT— (A);TTTXT—, we also have

i p(l,A)ET%li%l —w as A—aAl. On the other hand, by monotoniclity assumption ;

) ¢
:. - ozl(?\) (h(lo) '
\; (M4), p(l,A)E—rXT -p(1,2 E—(——Y for A< AO. Therefore, for A near
N Ul(l A) al(A)

> -
Al' p(l’A)GTTTXT_ P(l.l)é;rx*. and

1)
~ u(1,2)u(A) = u(l,A)[al(A)u(l,A)-+Bl(A)u‘(1,A)] > 0.
)
N 11
V t
e 4
> 1
T D T e A A P A o
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This shows that o(A)

=0 for A near A Therefore

1

N(A) = N (A)+e(A) =0, for A near A.. '
o 1 "
{2) We shall compare the equations
(p(x,A, ), u")" + q(x.A+)u =0, for 0<Sx <1, K
(2.6)
u(0) = BO(A+). u’(0) = -aO(A+). X
and :
» :
(p,(A+)v')' +q()v=0 for 0sSxs1, h
(2.7) ;
v(0) = B(A), v/ (0) = - '
where %
(2.8) = p(O,A+)ao(A+), B = p,(A*)BO(A+). ;
Since p(x,A,) 2 py(2,), alx,2,) s q (A,) and p(0,2 )22 = p (3 )% tne ]
p Ps qix, A, q A, | Bo(Ay) +'B :
first and second comparison theorems apply. By assumption (L3), %:%%f% < 0. i
*
q (AQ) = - 2 = (AQ -

Therefore pa(hL) s, where s ——TX:T and equation (2.7) is equiva :

lent to
vl - s’v=0 ,
(2.9) I

v(0) = B, v/ (0) = ~

whose solution is

(2.10) =B coshsx-g sinhsx, if s > 0,

or

(2.11) v=-ax+B8, if s =0,

By assumption (L3), aO(A+)BO(A+) < 0, which implies that af < O.
course, o and f cannot both be zero.) Therefore (2.10) and (2.
that v(x) has no zeros in (0,1]. Consequently u(x) has no ze
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" i
i '
" (0,11, and N (x,) = O.

Y o+

L v/ (1) B tanh s - (a/s) '
D If s >0, then p,(A )VTTT_ ,(A+)s[8 —{o/s) tanh s] > 0, since )

v'(1)

3 «@ 0. 1f s=0, then pAIY = P[50 2 0. Stnce §
i u’ (1) v/ (1) u’ (1) ‘
'Q p(1,2 )GTTT— P (A )_T_T_ this shows that p(1,a )—T—y— 2 0. On the other :
b hand, ay (A )BI(A+) 2 0 by assumption (L3). This implies :
. _ a1(A+) u (1 A#) _ ai(h-o)

~ p(1,2a )-7——)— £ 0, so that p(1,a )—m—l—x:)- p(1,A )ﬂ——y and ]
. k
L~ =

- u(l,A+)u(A+) = u(l,A+)[a1(A+)u(1,A+)‘+Bl(h+)u (I,A*)] 2 0. Noting that ]
‘Q u(l,A+) # 0, this shows that 0(A+) = 0. Therefore

. N(A,) = Ny(A,) +o(a,) = 0. Q.E.D. ;
;: f
A Remark. By the previous lemma, if (1.1) satisfies the limit assumption (L3),

' then N(A+) = 0. If (1.1) also satisfies the monotonicity assumptions
L%

S (M1) - (M4), and A1 < A+, then N(A) = 0 for A1 <AL A+. This will
[
‘
f: follow from Theorem 2.1 (1), which implies that N(A) 1s a nondecreasing :
‘. \
- function. Also, if A1 < Al then N(A) = 0 for A1 <A< Al. This will
_ﬁ follow from Theorem 2.1 (3). However, it can happen that a_ = A1 = Al. In )
o )
j: this case, N(A) =1 for A near Al. An example of this Is the Sturm- J
‘)
) Liouville problem
A
p 2
u’” + A u=0, for 0 s xs51, X

5 (2- 12) Y
i u’(0) =0 =u'(1), h
:.j where A1 =0 A<= A2. In this case, the first eigenvalue is ;
)

oS
'e Ay =0-= Al' with eigenfunction wl(x) =1, )

.

Proof of Theorem 2.1.

{1) Suppose that BI(A) £ 0. THen Lemma 2.1 implies that N(A) 1is a

piecewise constant function with jump discontinuities at the points

Ak : N(Ak+e) = N(Ak)-*l. N(Ak-e) = N(Ak). Therefore, for A’ < A in

13
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(Al'AZ)’ N(A”) =N(A’) equals the number of Jjump discontinuities of N(A) in
{A’,A”), which equals the number of eigenvalues in {[A’,A”). If Bl(k) = 0,

then the same is true, but the elgenvalues are Ak = Wy

(2) Suppose N(A’) = j < k = N(A”). By (1), there exist exactly k- /J
eigenvalues in the interval [A’,A"). If Bl(k) 2 0, then Lemma 2.1 implies

that A’ < AJ+1 < Ak < A”. The same is true if BI(A) = 0, where the eigen-

values are A Thus A’ £ A <A < <A < A”.

k = M 3+ J+2 cen K (If J+1 =k,

this sequence contains only one eigenvalue.)

(3) Lemma 2.2 implies that there exists AO' A1 < AO < A2, such that
N(AO) = 0. (We may assume A1 < AO’ unless A, _ = A1 = Al. In this latter
case, conclusion (1) remains valid if A’ = Al') If A1 < AO’ then (1)

implies that there are no eigenvalues in the interval (AI.AO). and N(A) =0

for A1 <AL AO. Thus (3) is true for A1 <A S AO.

We now drop the assumption Al < AO and assume AO < A. Any eigenvalues

in [Al,h) are contained in [AO.A), and the number of these elgenvalues is

N(A)-—N(AO) = N(A). Q.E.D.

Remark. The Sturm oscillation theorem implies that if (1.1) satisfies the

monotonicity assumptions (M1) - (M4) and the limit assumption (L1), then

lim N(A) = o.

A*Az

We can now describe the shooting method.

STEP 0. Find values L0 < RO'

This implies that L0 < An < RO.

such that N(LO) =n-1 and N(Ro) = n.

STEP k. For given values L, <R __,, with N, ,) =n-1, N(R__,) = n,

find values Lk'Rk’ such that N(Lk) =n-1, N(Rk) = n,

be-1 S L < R SRy 2nd R oLy <Ry mhyey

14
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STOP when Rk--Lk < t, where T is a glven tolerance.

To implement the above steps, we need an initial value solver to compute
the solution u(x,A) of (1.4), when A = Lk’Rk' This allcws us to calculate
N(Lk) and N(Rk). We also need a nonlinear solver to calculate the new
values Lk+1’Rk+1' We have in mind a combination of the bisection method for
the integer function N{(A), and some other method (such as the secant method)
for the continuous function u(A) = al(k)u(l,l)-*Bl(h)u’(l,A). Denoting
Mk = (Lk+Rk)/2, the bisection method would set Lk+1 = Lk‘ Rk+1 = Mk if
N(Mk) =n, or Lk+1 = Mk’ Rk+1 = Rk if N(Mk) =n-1. The other part of
the solver would be an iterative method to solve u(A) = 0. The approximate
eigenvalue An will be either the midpoint of the last interval [Lk’Rk]' or
the last approximation An found by the iterative method. The approximate
eigenfunction ¢n(x) will be the solution of (1.4), with A = An' Usually,
this will have been calculated already, and no further work will be needed.
STEP 0 can be carried out either by using estimates of An which the user
might have, or by using a related boundary value problem whose elgenvalues are
known.

Assuming that the initial value problems are solved exactly, the method
gives a sharp a-posteriori error estimate for the eigenvalue An. Of course,
the differential equations will be solved numerically. An effective implemen-
tation of this method must relate the accuracy of the initial value solver
(governed by an input tolerance parameter) to the value Rk-Lk, and to the
accuracy of the nonlinear solver for finding Lk'Rk'

If we are only interested in the eigenvalue An’ and not the eigenfunc-
tion wn(x). then we need only concern ourselves with the count of the zeros

of wu(x,A) and the correction term o. This can be obtained by solving

15
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various transformed formulations (such as that used in the invariant imbedding
method).

The method resembles a count of the critical lengths in the invariant
imbedding method (see Scott [15, Chap. 5]). However, a simple count of the
critical lengths (with no correction term) does not produce a correct algo-

rithm, for general boundary conditions. We shall return to this point in §6.

Remark. We can obtain another version of the shooting theorem if the words
"increasing” and "decreasing" are interchanged in the monotonicity assumptions

(M1) - (M4), while A1 and A2 are interchanged in the limit assumptions

(L1) - (L3). 1In this case, the Sturm oscillation theorem would declare the

> > ...
existence of a decreasing sequence of eigenvalues Am > Am+1 Am+2 ’

which tends to Al' There is no change in the definition of N(A). The con-

clusions in the shooting theorem would be changed to the following:
(1) The interval (A’,A”] contains exactly N(A’) -N(A”) elgenvalues

of (1.1).

(2) If N(A’) = J > k = N(A”), then the eigenvalues Ak+1' A LA

k+2' Ay

, < ”
exist, and A AJ 31 R < Ak+2 < Ak+1 < A”.

(3) For A1 <AL A2, (1.1) has exactly N(A)} elgenvalues in the
interval (A,A2].
This version of the shooting theorem would apply to a Sturm-Liouville

equation such as the acoustics problem (1.2). This new version of the theorem

easily follows from the old version by considering the functlons

p(x,A) = p(x,~A), q(x,A) = q(x,-A), &l(x) = @, (-A) and Ei(k) = B, (=A).
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3. The Discrete Problem.

o
In this section, we shall discretlize the boundary value problem (1.1).
We shall generate a difference scheme by using finite elements. This is a
convenient method which guarantees a local O(hz) error and a symmetric dif-
ference matrix. In §4, we shall apply Sturm sequences to the discrete
. problem. This will lead to another proof of the shooting theorem, and will
-
\3 account for the similarity between the shooting method and the Sturm sequence
N
A
o algorithm.
” Recall that the energy inner product B(u,v) = B(A;u,v) for the problem
0y
0
X (1.1) is given by
e (A) (A)
' - - oo + ay
3 (3.1) B(u, v) WP(O,A)U(O)V(O) mP(l.A)U(l)V(l)
5
X 1 .
: +.[ (pu’v’—quv)dx.(
0
-J
o A weak solution of (1.1) (for a fixed A) 1is a function u 1in the Sobolev
X
-] space H'{0,1], such that
‘ (3.2) B(u,v) = 0, for all v e H'[0,1].
ot
N
5j If (3.2) admits a nontrivial solution uo(x) for a particular value A = AO’
o)
W
A then AO is an eigenvalue, and uo(x) is a corresponding eigenfunction. (If

o BO(A) = 0, then %9 is set equal to 0 1in (3.1), and H1[0,1] is replaced
! 0

;xj by the subspace of functions v e H1[0,1], such that v(0) = 0. The case
= Bl(h) = 0 1is treated similarly. We shall carry out the calculations in the
KE generic case BO(A) 2 0, Bl(A) #0.)

\"

;; The problem will be discretized using plecewise linear functions, with
o

(‘)Strictly speaking, the energy inner product for the operator in (1.1} is

L/ the negative of the inner product (3.1). But this Is irrelevant for the
: equation B(u,v) = 0.

o

Y

¢
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) uniform mesh h = 1/n. Consider the partition x, < x, < ... < x_ of the

interval [0,1] by the nodes x, = ih. The finite element space Sh is the

Ey i
space of continuous functions on [0,1]) which are linear on each interval
o8
K [xi-l’xi]' The inner product (3.1) will now be restricted to S+ @and the
O
l‘
i\ integrals in (3.1) will be approximated by quadrature formulas. We shall use
‘, the midpoint rule for the integral I pu‘v’dx, and the trapezold rule for the
b 1 0
; integral I quvdx. This defines an inner product Bh(u,v) on Sh' The
¢ o
A finite element solution is a function u € Sh' such that
x
n
) (3.3) Bh(u,v) =0 for all v e Sh’
‘ L]
f A basis VorVyre 0 Vg for Sh can be obtained as follows:
>
o -x/h+1, for x, S xS x,,
e (3.4a) v.(x) =
' 0
W 0 elsewhere.
¥
\_
- (x-xi)/h + 1, for Xy <x s Xy
rd
2 (3.4b) vi(x) = {=(x-x,)/h + 1, for x, S x S x, .,
N 0 elsewhere,
> for 1 <1is<n-1.
y]
o
(x-xn)/h+'1, for X -1 <x s X
- (3.4c) v_(x)
Y 0] elsewhere.
o This basis is uniquely determined by the property
&
[,
= <
; (3.4d) vi(xJ) 85 (0s1,J <
- It also satisfies
x
- The support of v, (x) 1is contained in the one or two
~ (3.4e) i
3 intervals which contain X, -
A function u e S; can be expressed in the form u(x) = § ulvi(x), where
, i=0
K
] i
1 k:
;f 18 )
I ),
J L)
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uy = u(xi). The equation (3.3) is now equivalent to the system of equations
n

(3.5) :E:uiBh(vi'vJ) =0, J=0,1,...,n.
i=0

Because of property (3.4e), Bh(vl'vJ) =0 if Ji-J1 > 1. A simple calcu-

lation shows that

r Pl
%, ,2_h
B vorvo) = "o Pt h T 2 Yo
Pn 1
a °3 h
B(v ,v)=Zp +—2-2gq,
(3.6) ) h  n’ n By “n h 2 'n
1
Bh(vi’vi) i (pl_1 + pl‘l) - hql, 1 <1 s n-1,
2
P 1
l#é
~Bh(vi'vi+1) = R 0<1 < n-1.

Here, pJ = pJ(A) denotes p(Jh,A), where J 1is an integer or half-integer,

and similarly for q, = q,(A). Multiplying the equations (3.5) by h, we

39

obtain a system of equations:

(3.7) A(A)u = 0,
where u = (uo.ul,. ..un)T and A(A) 1is the matrix

(by-a,) -b, ]

-bo (b0+b1—a1) —b1
-bl (b1+b2-a2) —b2
(3.8) A(A) = .
-bn-2 (bn-2+bn—1_an—1) ““n-1
L _bn-l (bn-l-a )

The matrix coefficients here are

Pt 0 B T TR S TN TNV
Ll ! D) ! L

\IFN\ ‘.'\

RIS TR T T S e A A LSRN
1N R A N P AR TR AN e
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%
) i
: | a ) = B () R oy
. 0 z % Bo(a) Po'’
. 2 :
a (A) = g_ q () hg*‘;) (),
- (3.9) 4 1
W 2 w
‘ a, (A) = h"q,(A), for 1 51 5 n-1, N
Y i i
bi(A) =p 4(A), for 051 5 n-1.
L 2
.
N Recall that we have assumed (for 1 = 0,1) that elther Bl(h) =0, or :
" ¢
N B,(A) > 0. If By(A) =0, then uy, =0 and the first row and column in ‘
N,
_ A(A) are omitted. 1If BI(A) = 0, then u, = 0 and the last row and column
) o
I~
.: are omitted. Thus A(A) 1is an mxm matrix, where m can be n-1, n or g,
[y
X n+1. We shall continue to confine our calculations to the generic case
Bi(A) >0, for 1 =0,1. In this case, A(A) 1is an (n+1)x(n+l) matrix. )
- The standard assumptions (S1) - (S3) in §1 imply that the ai(A) and Y
‘g bJ(A) are continuous functions, and bJ(A) 2 k > 0. The monotonicity
: assumptions (M1) - (M4) imply that the functlons allk) are strictly increas-
I
) ing and the bJ(A) are nonincreasing. P
d
N 1
N Remark. The finite difference method leads to almost the same difference A
o scheme as (3.7). Using the difference operator Aui = (u 1-u 1)/h, A
l#é 1-5 :
f and approximating the differential equation in (1.1) by the difference equa- .
: tions A(plAui)-fqiui = 0, we obtain all of the equations in (3.7) except
:1 the first and last equations (corresponding to the first and last rows of
L, d
'
- A(X)). For the discretization of the boundary conditions in (1.1), a standard
Ca
’ procedure is to discretize the derivative u’(0) by (ul—u_l)/Zh, the deri-
i vative u’(1) by (un+1-un_1)/2h, and to extend p(x,A) slightly outside of :
e’ .
b the interval [0,1] ¢ty reflecting values about the endpoints x = G and X
N .
* x = 1. If we carry out this procedure, we obtain new first and last equations
)r ‘
) which differ by O(hz) terms from the old first and last equations in (3.7). )
) .
N 4
M 20 "
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Therefore, we may regard the first and last equatioﬁs in (3.7) as discretiza-
tions of the boundary conditions in (1.1). We may also regard the first equa-
tion in (3.7) together with the equation Uy = BO(A). as a discretization of
the initial conditions in (1.4).

If we set v = pu’, then the second order equation (1.4) is converted to

a first order system

u’ = v/p,
(3.10) v/ = -qu,
u(0) = BO' v(0) = -p(O)aO.

The first n equations (3.7) are equivalent to the difference scheme

(3.11)

Vi T Vi TRy

where v, =p 4 [EL;%Sﬂ:l]. This is an implicit, general one-step method,
‘--

2
which converges to the solution of (3.10). (See, for example, Hairer, Norsett

and Wanner [9].) Therefore the discrete solution U of (3.7) (with the last

equation omitted) converges to the continuous solution u(x,A) of (1.4), and

the discrete derivative ui = EL;%sﬂ:l converges to u’(x,h).
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4. Application of Sturm Sequences.

Let A(A) be the finite element matrix (3.8). The Sturm sequence
SO(A),Sl(A), Sn+1(k) for A(A) 1is defined as follows. SO(A) = 1, and
for 1 <1 <n+1, Si(A) is the ith principal minor of A(A):

(bo—ao) —b0
-bO (b0+b1-a1) —bl
-b1 (b1+b2-a2) -b2
(4.1) s, = | '
byg (gt pmay 5) By,
by (by %Py 4723y _y)
(In the case 1 = n+1, bi-l = bn is defined to be zero.) The Sturm
sequence should not be computed directly from its definition (4.1), but from
the recursion relation
S = (b, .,+b,-a )S,6 - b2 S for 11 <5 n-1
i+l i-1 71 171 i-171-1v !
(4.2) 2
Sn+1 = (bn-l-an)sn - n-lsn—l’
vwhich follows from the cofactor expansion of the determinant S by its

1+1

Note that S

last row.
n+1

= det[A(A)]. The main significance of the Sturm

sequence is that it can be used to approximate the zeros of det[A(A)]

(which, in turn, approximate the eigenvalues of (1.1)). See Stoer, Bullrsch

{17] for the application of Sturm sequences to linear eigenvalue problems.

Definition 4.1. For a given A in c(A) 1s the number of sign

(AI'AZ)’

changes in the sequence SO(A),SI(A). (A), after the zero terms (if

Sn+1

any) have been omitted from the sequence.
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The following theorem, which is proved in Greenberg [7, §4], gives the main

facts about the Sturm sequence (4.1).

Theorem 4.1. Let A(A) be the finite element matrix in (3.8). Suppose that
{1.1) satisfies the monotonicity assumptions (M1) - (M4). Then:

(1) For any numbers A’ < A” in (A1'A2)' det[A(A)] has exactly
c(A”) -c(A’) different zeros in the interval [A’,A"]).

(2) The zeros of Si(A) and Si_l(k) are interlaced, for 1 £ 1 £ n+l.

If (1.1) also satisfies either the limit assumption (L2) or (L3), then:

(3) For any AO in (AI’AZ)’ det[A(A)] has exactly c(AO) different
zeros in the interval (Al,AO)(.)
If (1.1) satisfies assumptions (M1) - (M4), (L1) and either (L2) or (L3),

then:

(4) det[A(A)] has exactly n+1 different zeros in (AI.AZ)(”

We shall now use Sturm sequences to study the discrete problem. The
initial value problem (1.4) is discretized by the first n equations of the

system (3.7), together with the initial condition uy = BO(A). Let uy

(0 £ 1 £ n) denote the solution of the discrete initial value problem.

_ R _ (..)
Theorem 4.2. u, = tisi (for 0 £ i £ n), where t1 = BO/(bi-lbi—Z"'bO) .

1 oA, = A, 1in limit assumption (L3), then the interval (A;,A;) should
be replaced by [AI,AO) in conclusion (3), and (AI'AZ) replaced by

[AI'AZ) in conclusion (4).
“**)This assumes that BO(A) > 0. See the remark following the theorem, for
the case BO(A) = 0.
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Proof. Consider the first (i+1) equations of (3.7):

L) - - = rz
((b0 ag)yu, by, 0 A
L) - - - = .
o bou0 + (b0+b1 al)u1 blu2 0 .
3 (4.3) " " i ;
By a¥iep * (PP g7 Uy T By =0
Pyq¥yeg * (B tByma Yy = By N
“ byui4154 4
. We can solve for uy using Cramer’s rule, to obtain T which .
) 1+1 :
A can be written: !
§ "
» ."
Yier 1 Wt "
(44) g = b— §—.
1 i+1 171 y
) First suppose that all SJ # 0 and all uJ # 0. Letting ui/S1 = ti’ ;
W
y - _ - - N
(4.4) shows that t1+1 = ti/bi' Thus ti = ti—l/bi—l = ti-z/(bi—lbi—Z) =
. = to/(b1-1b1—2"’bo)' Since Uy = B, and S0 =1, t = By and g
. _ ;
. ti = BO/(bi—lbi—Z"'bO)' ;;
) 4
3 Now consider the case where some u‘j or SJ are zero. Note that two !
) consecutive uJ cannot be zero, and two consecutive SJ cannot be zero. :
A &
. This follows from the recursion relations (4.2) and i
(4.5) —bi-lui-l +(b1_1+bi—a1)u1--b1ui+1 = 0.
If u, = 0 = Uy g then (4.5) implies that U g = 0. (Recall that F
bi—l = phé # 0). Similarly, O = U S 5, = = Uy which contradicts
)
: u0 = BO 2 0. In the same way, (4.2) implies that two consecutive SJ are not Q
zero. Equation (4.4) may be written uls1+1 = biu1+lsi’ which shows that -
u, = 0 if and only if Si =0. If u, = Si = 0, then equations (4.2) and ~
(4.5) imply f
.
3 .l
4 24 .
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(4.8) Y141 77 B Y S1e1 = 01451y
Therefore =31 = 1 -1 5o that t =t, ./(b,b, ) even if
St b1b1_1 Sl—l' 1+1 i-1 i7i-17
ui = S1 =0 Q.E.D.
Remark 1. In Theorem 4.2, we have assumed that BO(A) > 0. 1If BO(A) = 0,
then the first equation in (3.7) is omitted, uy = 0, and
(bo+b1-a1) -bl
—b1 (b1+b2-a2) ~b2
(4.7) S1 =
by by oty gty ) by
-bi—l (bi_1+bi-ai)
In this case (4.4) is replaced by
1 u
(4.8) =
Sy by Sy
and so u, =t S, (for 1515 n), where t, =t,/(b,_.b ,...b)), and
t1 = u1 # 0. Thus, if BO = 0, then all t1 have the same slgn as ul. If
Bo > 0, then Theorem 4.2 shows that all t1 > 0. In both cases, the solution
(uo.ul,. .,un) of the discrete initial value problem has the same number of

sign changes as the Sturm sequence S

there is an additional function

last sequence.)

Remark 2. Theorem 4.2 indicates

attempt to calculate Si

for small h.

O'Sl" "Sn' (Note that if BO > 0,

Sn+1’ which has not been included in the

that we can expect overflow to occur, if we

For u

j can be expected to have

moderate size, since it is the discrete solution of the initial value problem

o N AT A O
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(1.4). But Sy = u;/t,, where 1/t, = [;_]bobl"'bi-l = [;] P1P3-..P
1 0 o) 33 t--
%Ix tnp(x)dx
% biﬂe 0 . This observation illustrates how how the closure method

can give insight into a numerical process.
Note that the matrix A(A) and all the functions derived from it depend
on the mesh size h. We shall now exhibit this dependence explicitly:

A(A) = A(h,2), Si = Si(h.A), c(A) = c(h,A), u, = ul(h,k).

Theorem 4.3. Suppose that (1.1) satisfies the monotonicity assumptions
(*)

(M1) - (M4), A1 <A K A2 , and A 1is not an eligenvalue of (1.1). Then
1im c(h,A) = N(XA).
h-0

Proof. We shall assume that BO(A) > 0. The case BO(A) =0 1is similar.
(See the remark at the end of the proof.)
Let co(h,A) be the number of sign changes in the sequence

S.(h,A),S,(h,A),,...,S (h,A). (Note that the last function S has been
0 1 n n+1

omitted.) By Theorem 4.2, co(h,A) equals the number of sign changes in the

sequence u_ (because all t, > 0). If wu(1l,A) # 0, then, as

Ugo Uyse e n U t

h—0, co(h,A) approaches the number of zeros of u(x,A) in (0,1). Thus

lim co(h,l) = NO(A). (The possibility u(1,A) = 0 will be considered below.)
h-0

We shall now look for the relation between the last function Sn+1 and

the correction term o¢(A). By the recursion relation (4.2),

- - 2 -
Sn+1 = (bn an)Sn bn 1Sn 1 Using the relations u, = tiS1 and
ti+1 = ti/bi from Theorem 4.2, we obtain

(.)If the coefficient functions in (1.1) can be extended continuously to

A= Al' then Theorem 4.3 is valid for A1 <AL A2.
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Sn+1 = (b -l_an)un/tn bn—lun—l/tn-—l
=L ((b .,-a Ju ~-b_ .u
tn n-1 n"n "n-1n-1"'
or
tnsn+1 = (bn—lﬁan)un-—bn-lun—l'

Using the formulas (3.8) for b _,,a . this becomes

2
= % _h -
tnSne1 = (pn_1+h81pn 59,4, P 1Uny
2 2
2
- _ _h
= hBIpnun-+pn_%(un un—l) 54,4,
hp Up—Up-1 h2
- BPn n~Un- - - - -
T B [alun+31[ h ]] (pn pn-i)(un un-l) 395
2
Letting u/ = Ei%?tl. we have shown
- hpn ’ 2

(4.9) tnSn+1 = B, [alun4-31un]-+0(h ).

Recall that u(A) = « (A)u(1,2) +8,(A)u’(1,2).  Clearly alun+f31ur'1—-)t_x
as h—0. Since we have assumed that A 1is not an eigenvalue of (1.1),

u(r) # 0. Equation (4.9) shows that sgn Sn+ = sgn u(A), for small h. We

1

shall now consider two cases, according to the possibilitles that u(1,A)

1}
o

or not.

Case 1. wu(1,A) = O.

For small h, co(h,A) = NO(A). sgn Sn* = sgn u(A) and sgn Sn = sgn u,

1

sgn u(1,A). Thus sgn Snsn+ = sgn u(1,A)u(A). Referring to Definition 2.1,

1

this shows that ¢(A) =0 if S S >0, and of(a) =1 if S S < 0.
n n+ n n+

1 1

Therefore c¢(h,A) = N(A), for small h.
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;| '
o, !
) :
o Case 2. u(1,1) = 0. :
D
_: In this case, ¢(A) =1 and N(A) = NO(A)+ 1. Since wu(1,A) =0, d
- u’(1,A) # 0. We shall suppose that u’(1,A) > 0. (The case u’(1,A) < 0 |is
s - -

::' similar.) Since u(A) = B, (A)u’(1,1), and u(d) =0, it follows that
\
{‘; B;(A) > 0 and u(r) > 0. ;
q For small h, the approximate solution (uo,ul,...,un) will have N_(A) )
:\ 3
? sign changes corresponding to the interior zeros of u(x,A). (Since

\\'

- u(1,A) = 0, there may also be a spurlous sign change near the end of the
5' sequence. ) The NO(A) sign changes will occur in an initial subsequence

uo,ul....,ui, where the node 1ih 1is near the largest interior zero of

‘al]
, u(x,A).

)

- - Since u’(1,A) > 0 and u(1l,A) = 0, there is a point X5 in (0,1), ;

N such that u(x,A) <0 for x; Sx<1, and u(xA) >0 for x;sx <1 N
ﬁ Correspondingly, the tail end of the solution sequence will be increasing: )

¢ u, <u < ... <u (where 1 < Jj). Furthermore, there are no sign changes
-y J J+1 n
i in the subsequence uy,,u y...,u,, and u, < 0. But it is possible that
¢ 1’7141 J J
¥
-~ u 2 0. This means that a spurious sign change may occur in the tail end of )
. the sequence. Of coursc, all of these things occur in the Sturm sequence,

'Jf since Sm = um/tm. Thus, there are NO(A) sign changes in the subsequence

N
v SO’SI""'Si’ there are no sign changes in the subsequence Si'si+1""'SJ’

; < < ... < ; < 0. >

i: SJ SJ+1 Sn' and SJ 0 Also Sn+1 0, since y

7. -
2 sgn Sn+1 = sgn u(A), for small h.
‘EI We now have two possibilities: either Sn < 0 or Sn 2z 0. If Sn <0,
(‘ then a sign change occurs between Sn and Sn+1' Therefore,

\

a c(h,A) = No(k)-+1 = N(A). If Sn 2 0, then a single sign change occurs in
v, the subsequence SJ'SJ+1""'Sn+1' Again c(h,A) = NO(A)-+1 = N(A). This

concludes Case 2.

A
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Until now, we have assumed that BO(A) > 0. If BO(A) # 0, then we must v
delete the first row and column of the matrix A(A) 1in (3.8), and set !
Uy = 0. Theorem 4.2 is changed slightly as indicated in Remark 1. After

'y these modifications, the proof is the same as above. Q.E.D.

Remark 3. In Theorem 4.3, A 1s not allowed to be an eigenvalue of (1.1).

- If A= Ak is an eigenvalue, then for small € > 0, and small h, the dis- R
"4 - LY.
: crete problem has a unique eigenvalue Ak in (Ak—e.xk+e). {(See Theorem A.1 K
- in the appendix.) If we do not use quadratures in the finite element discre- ’

tization, then Ak < Xk' If this were also true with quadratures, then
Theorem 4.3 would be valid for A = Ak. Unfortunately, this does not seem to
be true, in general. Moreover, if we were to use a pure finite element dis-

cretization without quadratures, then the matrix A(A) in (3.8) would not have

¥ the structure necessary for the application of Sturm sequences. "
. !
Lemma 4.1.
(1) Let A1 <A A" < A2. If the interval [A’,A”] contains no

. eigenvalues of (1.1), then N(A’) = N(A”). y
: (2) 1If Ak is an eigenvalue of (1.1), then for small € > O,
N(Ak—c) = N(Ak) and N(Ak+e) = N(Ak)+ 1. '
Proof. (1) For small h, the discrete problem has no eigenvalues in
{A’,A”]. (See the appendix for properties of the approximating eigenvalues
A, -) Theorem 4.3 implies that c(h,A) = N(A’) and c(h,a”) = N(A"), for
small h. Theorem 4.1 (1) implies that c¢(h,A’) = c(h,A”), and therefore 1
N(A“) = N(A”).

\ {2) We shall consider two cases, according to the possibilities that

u(l,Ak) = 0 or not.

o,

's"'-"."\""."-."b\"" ‘a

-
i)
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Case 1. u(l,Ak) z 0.

In this case, the number of zeros of u(x,A) in (0,1) does not change if A

is moved slightly away from A Therefore No(Ak—e) = No(Ak) = No(Ak+c). By

K’
definition, G(Ak) =0, so N(Ak) = No(kk). For small h, the discrete

problem has a unique eigenvalue Xk in the interval (Ak-e,Ak+e) (see the

appendix). Therefore c(h,kk+e) = c(h.Ak—e) +1. Theorem 4.3 implles that

N(Ak+e) N(Ak-c)+ 1. This implies that v(Ak+c) =1 and o{A -€) = 0, so

k

N(Ak-e) N(Ak) and N(Ak+e) = N(Ak)* 1.

Case 2. u(l.Ak) = 0.
In this case, BI(A) =0, o(A) =0 and N(A) = NO(A), for A1 <A< A2.

to A, te, the number of zeros of u(x,A)

When A 1is moved slightly from Ak K

in (0,1) either remains the same, or increases by 1. Thus each of the
- [T a
numbers No(Ak+e). NO(Ak €) equals either No(Ak) or No(hk)+ 1. As in

case 1, c(h,Ak+c) = c(h,Ak-e) +1, for small h, and therefore

No(Ak+e) = No(hk—e) +1. This implies that No(Ak-e) = No(Ak) and
No(lkﬂ:) = No(kk) +1. Q.E.D.
Lemma 4.2.

(1) If (1.1) satisfies the limit assumption (L3), then Si(h,A+) 20
for all h=1/n, and 1 <1 S n+1l.

(2) If (1.1) satisfles the limit assumption (L2), then there exists
h0 > 0 and AO in (AI’AZ)’ such that Si(h,AO) 20 forall h=1/n < h

and 1 £1 £ n+1.

0'

Procf. (1) 1In Greenberg [7, Lemma 3.3] it is shown for a matrix A of type
(3.8), that if bi 20 for 01 <n-1, and a; €0 for 0<1 sn,

ther detfA] 2 0. Referring to (3.9), we see that this implies (1).
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(2) Assumption (L2) 1implies that 1lim q (A) = -w. Therefore there is a

A*Al

»
AO in (A1'Az) such that q (AO) < 0. Referring to (3.9), we see that

ai(h,ho) <0 forall h=1/n, and 1 <1 <£n-1, while bi(h,A) >0 for

ARSI

-yt

all A, h=1/n and 0 <i{ €£n-1. We must still deal with a, and a .

(Recall that if BO(A) = 0, then the first row and column of A(A) in (3.8)

EESSAT

are omitted, so a, does not occur. Similarly, if B1(A) = 0, then a,

does not occur. Therefore we may assume that BO(A) > 0 and Bl(A) > 0.)

h2 ao(h)

Define ao(h.A) = ﬁ—qO(A), bo(h,h) = pé(k)-' E_T_T 0 (),

2
- h -
2 (hA)=D2q () and B__ (hA)=p 1)(A)+hﬁ1—§-"-}p (A). Then

n--
2

LRI

ao(h,Ao) < 0, an(h,ho) <0, bo--a0 = bo-ao and bn_l--an = b

must show that bo(h,Ao) >0 and bn_l(h,lo) > 0 for small h.

m = max p(x,A
0<x<1

0), and recall that p(x,A) 2 k > 0, by assumption (S2). Then

(l1(lo)

- ao(Ap) -
bo(h,AO) k- hl——r———lm and b (h.lo) 2 k hl——r——y . Let

_ k BolAo), Kk, Bi(Ao)
hy = min(l e e mla(ag

0 < h< ho. Q.E.D.

)I). Then bo(h,ho) >0 and bn_l(h,ko) > 0, for

A Second Proof of the Shooting Theorem.

(1) Suppose that (1.1) satisfies the monotonicity assumptions (M1)-(M4).
Lemma 4.1 shows that N(A) 1is a piecewise constant function, with Jjump dis-
continuities at the eigenvalues Ak, and N(Ak-c) = N(Ak), N(Ak+e) = N(Ak)+1.
Therefore N(A”) ~N(A’) equals the number of Jump discontinuitlies in
[(A’,A”), which equals the number of eigenvalues in [A’,A").

(2) By definition of the eigenvalue Ak’ u(x,Ak) has exactly k-1
interior zeros. By definition of N(A), N(A,) =k-1. For A , <A s,
N(A) = N(Ak) because the interval [A,Ak) contains no eigenvalues of (1.1).
Thus N(A) = k-1 for Ak-l <AS Ak. Now suppose that
N(A‘) = J < k < N(A”). Then the interval [A’,A”) contains exactly

L SO S A S AN

i i
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: eigenvalues and A’ < AJ+1 oo < Ak < A”.
g
j (3) Suppose that (1.1) also satisfies either limit assumption (L2) or y
-‘
N (L3). By Lemma 4.2, there exists AO such that Sl(h,Ao) 2 0 for small
¥ o
h=1/n, and 1 <1 <n+1l. This implies that c(h.ko) = 0., If AO is not )
(3
v
N an eigenvalue of (1.1), then c(h,ho) = N(Ao). for small h, and therefore é
) N
; N(AO) =
\ Suppose that AO is an eigenvalue of (1.1). For small h, the discrete A
/ problem has a unique eigenvalue pY in (A,-e,A.+e) (or in [A_ ,A.+e), 1If :
K 0 o " 0'"o
AO = Al)' Theorem 4.1 (1) implies that c(h.h0+e) = c(h,Ao—e)+ 1. But since
' c(h,A) 1is a nondecreasing function of A, and since c(h,AO) =0, it i
: follows that c(h,Ao-e) = 0. Therefore c(h.A0+c) = 1, for small h. Since -3
\ -
. c(h,AO+c) = N(A0+e), this implies that N(A0+e) = 1. By Lemma 4.1,
¥ ]
o N(A0+c) = N(AO) +1, therefore N(Ao) = 0. Now (1) implies that (1.1) has no z
x’ eigenvalues in (A,,A.), and N(A) =0 for A, <A SA.. If A>Aa, then 3
L 1'% 1 0 0 ’
any eigenvalues in [Al,A) are contained in [AO,A), and the number of these
‘4 eigenvalues is N(A)-—N(AO) = N(A). Q.E.D. e
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5. Sturmian Theorems for the Discrete Problem.

In this section, we shall prove discrete versions of the Sturm compari-
son, oscillation and separation theorems. For 1 £ 1 S n, let Ai(A) be the

ixi matrix which is the upper left corner of the matrix A(A) 1in (3.8):

(bo-ao) -b

-b0 (b0+b

(5.1) Ai(k) =

1-3*Py272 ) By,

0y o (by_o*b

Si = det[Ai(A)] is the ith function in the Sturm sequence for A(A). The

Sturm sequence for Ai(A) is SO'Sl'SZ""'Si’

Definition §.1. For 1 <1 sn, and for a given A in (Al,Aﬂ). cl(A) is

(&

the number of sign changes in the sequence SO(A),SI(A),...,Si(A), after the

zero terms (if any) have been omitted from the sequence.

(Note that ci(A) has been defined for 1 £ 1 € n. We shall not use the

(A) for c(A), or A __ . (A) for A(X).) The following theorem

notation ¢
n+1

n+1

is proved in Greenberg [7, Theorem 3.2].

Theorem 5.1. Suppose that
(1) aj(l) is a strictly increasing function, for 0 < j < 1i-1,
(2) bJ(A) is a nonincreasing function, for 0 < J <€ 1i-1,

(3) b,(A) has no zeros, for 1 < J <i-2.

J
Let A’ < A” be numbers in (AI'AE)' Then det[Ai(A)] has exactly

ci(A”)-ci(A’) different zeros in the interval [A’,A”).
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In the present situation, where A(A) is the finite element matrix corres-

ponding to a discretization of (1.1), bJ =p 1 >0, so condition (3) in the
I3

theorem is satisfied. If (1.1) satisfies the monotonicity assumptions
(M1) - (M3), then conditions (1) and (2) are also satisfied. Note that
assumption (M4) is not required, because al(A) and Bl(x) appear only in
the last row of A(A), so they do not appear in any of the matrices Ai(A).
1 €1 <n.

Let B = B(A) be the nx(n+l1) matrix obtained from A(A) by deleting

the last row:

(bo-ao)

_bo

Let u = u(l) (uO(A).ul(A)....,un(A))T be the solution of the discrete
version of the unitial value problem (1.4). In other words, u 1is the solu-

tion of

Pall g S S N BN PN J

(5.3) uy = BO(A).

We shall usually assume that BO(A) > 0, with an occasional remark on the

PN I FEPEa
Ak ) g

case BO(A) = 0. Although B and u depend on the mesh size h as well as
A, we shall usually suppress h from the notation, since the mesh size will
usually be fixed, in this section.

The last n-1 equations of (5.3) are

! LI (AL '-' ""
LA N, o~



(5.4) -b (b, .+b —ai)u =0, for 1$1<n-1

i-1%1-1 Pty 17 P14

This implies that two consecutive terms u cannot both be zero. (We

1" Y141
have already discussed this after equation (4.5), which coincides with (5.4).)

Also, (5.4) implies that if u, =0, then u

< 0 (since all b, > 0)}.
i J

1-1Y1+1

Definition 5.2. We shall say that u(A) has a sign change at uJ(A) if

(AMu,(A) <0, or (x) = 0.

Y-ty Y51

Note that if u =0, then j-1>0 and u u, < 0.
J-1 J J-24

either

Theorem 5.2 (First Comparison Theorem). Suppose that (1.4) satisfies the

monotonicity conditions (M1) - (M3). Let Al < Az be numbers in (Al'AZ)'

Then:

(1) u(Az) has at least as many sign changes as u(Al). Furthermore,
u(AZ) has more sign changes than u(Al) if and only if un(A) has a zero in
the interval [Al,hz).

(2) If the ith sign change for u(Al) occurs at u, (A,), and for

Ji 1

. < .
u(hz) at uJZ(AZ), then Jo < Jl' Furthermore, J2 Jq if and only if

uji(A) has a zero in (AI,AZ).
Proof.

(1) By Theorem 4.2, u(A) has the same number of sign changes as the
Sturm sequence SO(A).SI(A),....Sn(A) for An(A). Therefore ul{)) has
exactly cn(A) sign changes. By Theorem 5.1, cn(Al) < cn(Az). Furthermore,

cn(Al) < cn(AZ) i. and only if Sn(A) = un(x)/tn(k) has a zero in (AI,AZ).

(2) Similarly, the sequence uO(A), ul(l),...,uJ(A) has exactly CJ(A)

sign changes. By assumption, (A,) = 1. Since c, (A,) £ c, (A])), the
g g Y p 1 Ji M TR

. o . Theref
sequence uO(AZ),ul(Az), ,ujl(Az) has at least 1 sign changes. Therefore

- - . . e e . . e A g -
A N A A A A e A i N A L Ot PN R L RO SO A AR (U (N4
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<
J2 < Jl' Furthermore, 32 < Jl if and only if uO(Az), ul(Az).....qu(AZ)

has more than 1 sign changes. The latter is true if and only if wu,  (A)
1

J

has a zero in [AI,AZ). However, since a sign change occurs at uJ (Al).
1

Definition 5.2 implies that (Al) # 0. Therefore the zero must occur in
1

Y
(Al,Az). Q.E.D.

Remark. In Greenberg [7], Sturm sequences are discussed from an axiomatic
standpoint. It is noted there that one of the axioms implies the following

fact: If Si+1(A0) = 0, then Sl(A)Si+1(A) >0 for AO-c <A< AO' and

i+1(7\) < 0 for AO < A< Ao-ve. Thus, as A Iincreases past AO' a

sign change is generated between Si(A) and Si+1(h)' Of course, the same is

S.(A)S
i

true for ui(l) and u1+1(A). If ui(k)u1+1(k) < 0, then as A lIncreases,

ui+l(A) cannot change sign before ui(A) does. This means that, as A

increases, the sign changes move from right to left. Also, if

i
change before both u

u _1(A)u1(A) >0 and u,(A)u, ,(A) >0, then u; (A} cannot have a sign

(A) and ui+1(A). For if ul(AO) = 0, then

ui_l(ho)ui+1(ko) < 0. This means that sign changes cannot appear spontaneous-

i-1

ly in the middle of the sequence. They must start at un(A). and move to the
left. This is exactly what happens to the zeros of the solution wu(x,A) of
the continuous problem (1.4).

The following lemma is proved in Greenberg [7, Lemma 3.2). (There is a
slight difference in notation, for two reasons. First of all, the first row
of A(A) 1is here indexed by 1 = 0, while in [7], it is indexed by 1 = 1.
Second, we assume here that none of the b have zeros, while in [7], this

J

assumption is made only for the first n-1 values b..)

J

Lemma 5.1. Suppose that, for 0 < j <n-1,

(1) a,(A) 1is a strictly increasing function,

J

36
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(2) b,(A) 1is a nonincreasing function,

J
(3) bJ(A) has no zeros.
Then, for 1 £ 1 < n, bi 1-bf 1§é:l is a strictly decreasing function on
- - |

any interval which contains no zeros of Si(A).

As before, condition (3) is automatically satisfied here, and conditions
(1) and (2) are implied by the monotonicity assumptions (M1) - (M3). We shall

use the following notation:

(5.5) u’ = (u,-u JJh, for 1 S {1 £ n.

i i "i-1

Theorem 5.3 (Second Comparison Theorem). Suppose that (1.4) satisfies the

ul (A)
i
- <
monotonicity conditions (M1) (M3). Then, for 1 <1 <n, pl-é(A)E;TXT is a

strictly decreasing function on any interval which contains no zeros of

ui(A).

Proof. By Theorem 4.2, u, = t,S where t, = BO/(b b b.). There-

i 171 i 1-171-2""""70
Ujoy Si-1
fore u; bi-l S, and
ul

i _byagfuymu ) by, _wal) _ 1 w2 Sy
pl_%(k)ui H [ ™ (1 W | = h b, _,-b.7y = | The theorem

now follows from Lemma 5.1. Q.E.D.

Remark. If BO(A) = 0, then the first row and column of A(A) 1in (3.8) must

be deleted, and ug = 0. The conclusion in Lemma 5.1 is changed to:
bi- ?ggll is a strictly decreasing function. (This now agrees with the
l 2s Uie
notation in (7].}) In this case, b, - 241 = 1 , so the conclu-
i i Sl 1+- 4
2 1+1
sion in Theorem 5.3 remains the same, except that 2 <1 < n. (For 1 =1,
ul
plﬁl = gg. which is a nonincreasing function.)
21

The following lemma is implied by Lemmas 3.4 and 4.2 in Greenberg [7].
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Lemma 5.2. Suppose that (1.1) satisfies assumptions (M2) and (L1). Then
lim S, (A) = (-l)iw, for 1 <1 sSn+1.

i
A»Az
Theorem 5.4 (Oscillation Theorem).

(1) Suppose that (1.1) satisfies (M1) - (M4) and (L1). Then there is a
number ho > 0 and an integer m, such that for mesh size h < ho, and
h = 1/n, the discrete problem has eigenvalues Am < Am+1 < ... < nel’

(2) Suppose that (1.1) satisfies (M1) - (M4), (L1) and either (L2) or
(L3). Then, for any mesh size h = 1/n, the discrete problem has eigenvalues
Al < Az < ... < An+1.

In (1) and (2), the eigenvector u(k), corresponding to Ak, has exactly

k-1 sign changes.

Proof.

(1) If u(A) is a solution of the discrete initial value problem (5.3),
then u(A) has exactly cn(h) sign changes. If A 1is an eigenvalue of
(1.1), then u(A) also satisfies the last equation in (3.7), and
det{A(A)] = O.

Let A, <A <A and suppose that AO is not an eigenvalue of (1.1)

1 0 2'
and N(AO) = m-1. Theorem 4.3 implies that there is a number h0 > 0. such
that when h < ho, then c(h,Ao) = N(AO) = m-1. We may suppose that ho
is small enough, so that ho < 1/m. In the following, we assume that h < ho.
By Lemma 5.2, ;12281(h.k) = (—1)im. This implies that for A near A2,
N

c(h,A) = n+1. Since c(h,AO) =m-1, Theorem 4.1 (1) implies that the

discrete problem has c(h.i)-—c(h,ko) = n-m+2 eigenvalues in the inter-

FY by <
val [AO,A). We shall denote them by Am < Am+1 < .,.. < An+1' where AO < Am

and A < X. Since A_ 1is the only eigenvalue in [Xk.i

n+1 k ),

k+1
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Ak+1) = c(h,Ak)'+1. Also c(h,An+1) = ¢(h,A) -1 = n. This implies that

c(h.ik) = k-1, for m<k £n+1. At any eigenvalue Ak’

S +1(h,hk) = det[A(h,Ak)] = 0. Therefore c(h.Ak) = cn(h,Ak). This shows
(k)
u

that the eigenvector = u(ik) has exactly k-1 sign changes.

(2) If (1.1) also satisfies (L2) or (L3) then Lemma 4.2 implies that AO
can be chosen so that c(h,AO) = 0, for small h. In this case, m = 1.

Q.E.D.

We shall conclude this section with a discussion of the Sturm separation
theorem. This theorem does not involve a parameter A. It asserts that if

u(x) and v(x) are linearly independent solutions of
(5.6) (p(x)y’) +qx)y =

then the zeros of u(x) and v(x) are interlaced. Let C be the
(n-1)x(n+1) matrix, corresponding to A{A) 1in (3.8), with the first and

last rows omitted:

—b0 c1 -b1 -
by S Th
(5.7) C= . - . ,
B3 2 TPpo

| Ph2 %1 P
where ¢y = bi_1-+b1-a1. Here, the coefficients bi,c1 are constants,
with b, > 0. The discrete problem corresponding to (5.8) is
(5.8) Cy = 0,
where y = (yo,yl,...,yn)T. As before, if y 1s a nontrivial solution of
(5.8), then two consecutive terms yi,yi+1 cannot both be zero. If Yy = 0
(where 1 €1 £n-1), then y1 1y1+1 < 0. However, in the present situa-
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tion, the possibility that Yo = 0 1is not excluded. We continue to use
Definition 5.2 for the position of a sign change. In particular, if Yo = 0,

then y has a sign change at Yy

Definition 5.3. The discrete Wronskian of u = (uo,ul,...,un)T and
- T =
v=(vgveeeavp ) ds wWlu,v) = (g, W, ... ,w 1), where
wi = uivi+1-v1ui*1, for 01 <£n-1,
Lemma 5.3 Let u = (u,,u u )T and v = (v,,v \" )T be solutions
— 0' 1""'n 0’ 1""'n
of (5.8), and let w(u,v) = (wo,wl,...,wn_l).
(1) u and v are linearly dependent if and only if w(u,v) = 0.
(2) biwi = bOwO’ for 1 €1 <n-1.
(3) If u and v are linearly independent, then w, # 0 for

i

0<i<n-1, and the wi all have the same sign.

Proof.
(1) We may assume that neither u nor v 1is the zero vector. If u

and v are linearly dependent, then there is a constant ¢ such that

v = cu. Then W = uiv“l--viu“’1 = uicuhl--cuiu1+1 = 0. Conversely, sup-
pose that w(u,v) = 0. Then UiV " VY T O, for 0£isn-1. If
v, #0 for 0 <1 <£n, then Ei=u‘—”—. Thus E9—=El=...=-u—“=c. and
i vy Vi Vo Vi Vn
u=cv. If vy = 0, then the relation uiv“l—-viu.1+1 = 0 1implies that
ui = 0, since v1+1 # 0. (Or, iIf 1 = n, un_lvn--vn_lun = 0 implies that
u =0.) Let c=2*1 (or4f {=n, c=201) and let y = u-cv.
n Vie1 Va-1

Then y 1is a solution of (5.8) and two consecutive terms Yy{+Yj4q 2re zero.
Therefore y =0 and u = cv.

(2) The equations (5.8) for u and v are of the form

40
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44 -b u + cu, -b,u = 0,

z J-17g-1 7 TN T Py

B (5.9)

! -b v +c.v, -b,w = 0.

J-1"J-1 JJ J J+1

>

o

! Multiply the first equation in (5.9) by vJ. and the second equation by uJ,
¥

B

¥ and then subtract. This gives the equation b, .w = b,w,, which implies
i J-1J-1 JJ

" that bjwj = bj-le-l = bJ-ZwJ-Z = ... = bowo.

¥ (3) This follows immediately from (2). Q.E.D.
BN

Theorem 5.5 (Separation Theorem). Let u = (uo,ul,...,un)T and

h v = (VO’vl""’vn)T be linearly independent solutions of (5.8). Suppose that
T\

: u has a sign change at uy and at u‘j (where 1 < Jj), and no sign changes
> between these. Then v has a sign change at some Vier where 1 < k 5 j.

2

o4

" Proof. Since u cannot have a sign change at Ugye 0 < 1. The sign changes
~I

D) <

; at ui and u‘j imply that ui_lu1 < 0, uy 0, uJ-luJ < 0 and u‘j = 0.

s Since u has no sign changes between ui and uJ. we may suppose that the
’

i- < 2
{. terms ui’u1+1""'uj-2 are all positive Uy S o, uy g2 0 and u‘j < 0.
”, Suppose that v has no sign change in the indicated range. Then we may

.n suppose that v s Vepeoe,V Y are all positive, and v, 2 0. Let

N PP 1-1'V1 J-2'Vj-1 P J

N _ = -

N wlu,v) = (wo,wl,...,wn_l). Then w,_, =wu,_,v,-v, ,u, <0 and
Y
b W, ., =u, ,v,-v,_ u, > 0. This contradicts Lemma 5.3 (3). .E.D.
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\ 6. An Incorrect Algorithm. )
\ )
[\ We shall consider an alternative algorithm for calculating the nth
o eigenvalue of (1.1). Let u(x,A) denote a solution of the initial value .
! .
l? problem (1.4), and let d
U »
)

K (6.1) Ulx,A) = @ (A)ulx,2) + 8, (A (x,4). I

W
jj It might seem natural to count the zeros of u(x,A) (for fixed A), rather
b
f{ than counting the zeros of u(x,A), with a correction using u(1,A), as in .
Ly

§2. In other words, if
¥
' (6.2) N’(A) equals the number of zeros of u(x,A) in the interval (0,1), )
af o
" we might conjecture the followlng:
j Hypothetical Theorem. If (1.1) satisfies the monotonicity assumptions

. (M1) - (M4), and either the limit assumption (L2) or (L3), then for
A A1 <A< A2, (1.1) has exactly N’(A) eigenvalues in the interval [AI,A).

o,
> ;

-, «
L
$ This would lead to an alternative shooting method for finding An. However,

) the above Hypothetical Theorem turns out to be false. Indeed, it is already

': false for linear eigenvalue problems. It depends on monotonicity properties M

L= :

f: of eigenvalues, which are valid for Dirichlet boundary conditions, but not for ]

. general boundary conditions. Because of this, the alternative shooting method

\ does not always work. We shall presently given an example where the alterna-

' »

. tive shooting method fails. This section has been included, because we b

2 believe that it is useful to point out that a numerical method can fall. It

- '

: is especially important for this method, which seems to attract believers :

", *

,: easily, and which may be used in applications. :

Note that if G(xO,A) = 0, then A 1is an eigenvalue on the interval

" '
\]

; ;

Y
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[0,x0], and X is a critical length (as used in the invariant imbedding

method). Thus N’(A) is the number of critical lengths which correspond to
A (and which are less than 1).

We shall now indicate the role played by monotonicity properties of
eigenvalues. We shall consider linear eigenvalue problems. In this case,

(1.1) has the form

{(p(x)u’)’ + (Ar(x)-q(x))u =0, for O S x S 1,

(6.3) aou(O) + ﬁou’(O) 0,

aIU(l) + Blu'(l)

0,

where r(x) 2 m > 0, and ai’Bi are constants (for 1 =0,1). For

0 <y <t, let An(y) denote the nth eigenvalue of the problem:

(p(x)u’)’ + (Ar(x)-q(x))u =0, for 0 < x Sy,

(6.4) aou(O) + Bou’(O) o,

[}

alu(y) + Blu’(y) 0.

For given n, we ask the following question:
(Q) Is An(y) a decreasing function on (0,1]7?

If the answer to (Q) is yes, for all n, then the Hypothetical Theorem is
true and the alternative algorithm is correct. To verify this, let u(x.Ao)

be the solution of the initial value problem

(p(x)u’)’ + (Aor(x)-q(x))u =0, for 0 <x <1,
(6.5)

u(0) = BO’ u’(0) = oy

and let u(x,AO) = alu(x,Ao)-+Blu (x,AO). If x, is a zero of u(x,AO) in

(6]

(0,1), then AO is an eigenvalue on [O,XO]. In other words, AO = Ak(xo).
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for some k. Since Ak(y) is a decreasing function,

Ak = Ak(l) < Ak(xo) = Ao. In this way, each zero of u(x.Ao) corresponds to

an eigenvaiuc less than A This shows that the Hypothetical Theorem and

o’
alternative algorithm are correct, if An(y) is a decreasing function, for
all n. Unfortunately, this is not true for general boundary conditions.

If the boundary condition at the right endpoint is a Dirichlet condition:
u(y) = 0, then the classical monotonicity theorem tells us that An(y) is a
decreasing function, for all n. But Greenberg [8] has shown that if the
boundary condition at the right endpoint is not a Dirichlet condition (i.e.,

31 # 0), then for given ny 2 1, there exist coefficient functions p(x},

q(x), r(x) and a subinterval [a,b] c (0,1], so that the elgenvalues Al(y).

Az(y),...,kno(y) are increasing functions in [a,b]. (On the other hand, for

given p{x), q(x), r(x), oy BO’ @, Bl‘ there exists n, 21, so that for

n 2z nl,

the Hypothetical Theorem and alternative algorithm to be correct for general

An(y) is a decreasing function on (0,1}.) THus, we cannot expect

boundary conditions. We now give a concrete example where they fail.
Example. For 0 < y <1, consider the eigenvalue problem

(p(x)u’)’ + Au=0, for 0 < x Sy,

(6.6) u(0) + v (0) =0,

u’(y) = 0.

The energy norm is given by

(6.7) B(v,v) = -p(0)v(0)2 + | p(x)v’ (x)%dx,
o
and
(6.8) Ay) = inf ﬂ"'—‘z’—),
vecllo.y] vl
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where [v[® = va(x)2 dx. Putting v(x) = 1, we find that
0

b A ly) s B(V';) = 'p;O). Thus

. i .
“. -
! (6.9) A, ly) <o. ;
. K
, ,

We now consider the two algorithms (given by Theorem 2.1 and the Hypothetical

Theorem) for finding the number of eigenvalues A < 0 (for the interval ;

1% £.€

{(0,y]). We must solve the initial value problem: b

-(p(x)u’)’ =0
r (6.10) '
! u(0) =1, u (0) = -1. o

Denote the solution by u(x), and let u(x)

v

u’(x). We obtain:

-pu’ = constant = p(0), so that

L N
L
y |
L4 u = u’ = -p(O) \
) U(X) u (X) W, '
b (6.11) '
. u(x) = Ix (0) 3
o -
- 3
: Since u’(x) < 0, u(x} 1is a decreasing function (with wu(0) = 1). For a
N given y (0 <y £1), u'(y) <0 and either
ﬂ
. (A) uly) 20, or (B) uly) <o. .
: In case (A), N0 = [number of zeros of u(x) in (0,y)] =0, =1, and :
) N=Nj+oc=1 Incase (B), Nj=1, 0=0 and N=Nj+o=1 Thus we »
- see that the algorithm of Theorem 2.1 counts one negative eigenvalue on Q
L [0,y], for all y in the interval (0,1]. ;
' On the other hand, the alternative algorithm, based on the Hypothetical ‘
) 3
Theorem counts the zeros of u(x) = u’(x) in (0,y). Since u(x) < 0, A
Cal
$ N’ = 0, predicting no negative eigenvalues! Here we have an example where

the Hypothetical Theorem and alternative algorithm are incorrect.

-

(R f 2l W N
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Remark 1. Greenberg [8] has shown that in the above example, Al(y) is an

increasing function on (0,1]. Thus we have "reverse monotonicity" in this

example!

Remark 2. An error of only 1 1in the integer function N’(A) can have a
fatal effect, when the bisection method uses N’(A) instead of N(A), as
described in §2. However, the error can be much larger than 1, 1if some

eigenvalue Ai(y) osclllates about a value A = AO.
Remark 3. The eigenvalues and critical lengths can be understood geometrical-

ly by introducing polar coordinates in the phase plane (see Scott, Shampine

and Wing [161). This is usually called the Prufer transformation. Let

u(x,A) = r(x,A) cos(x,A),

c
n

(6.12)
p(x,A)u’ (x,A) = r(x,A) sin 8(x,2).

<
i

The point U(x,A) = (u(x,A),p(x,A)u’(x,A)) moves along a curve in the

(u,v)-plane as x varies, with A fixed, or as A varies, with x fixed.

Denoting 6/(x,A) = Qgéngl and r'(x,A) = Qféﬁlél (which conforms to our
notation u’(x,A) = éEééLﬁl), we have
u’ =r’'cos 8 - ro’ sin 6,

(6.13)
(pu’)’ =r’ sin 8 + r8’ cos 8.

Setting pu’ =r sin @ and (pu’)’ +qu = 0, equations (6.13) imply

pr’ cos 6 - pr6’ sin 8 = r sin 6,
(6.14)
r’ sin @ + r8’ cos 6 = -qr cos 6.

We can solve for 6’ in (6.14), to obtain

(6.15) 8’ = -[q 005294-%sin29].

Also, (6.12) implies
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_ u’ (x,A)
(G.16) tan 8(x,A) = p(x,2A) m

Equation (£.16) an? €'urm's second comparison theorem show that as A
increases, with x fixed, the point U(x,A) moves in a clockwise direction.
On the other hand, (6.15) shows that as x increases from 0 to 1, with A
fixed, U(x,A) may move elther In the clockwise or counterclockwise direction
(if q < 0). However, when U(x,A) crosses the v-axis, it moves in a clock-
wise direction.

We shall now consider the boundary conditions in (1.1). Let

tan m (A) = —p(O,A)gg(——-(l)y,

tan m,(A) = —p(1.A)g:7(%-.

Let Hi(A) be the line v = [tan ni(A)]u in the (u,v)-plane (for

i =0,1). The boundary condition aO(A)u(O)-*BO(A)u’(O) =0 in ( 1) is
equivalent to tan 6(0,A) = tan nO(A), which means that the point U(O0,A)
lies on the line HO(A). Similarly, the boundary condition
aI(A)u(l)-+BI(A)u’(1) = 0 means that U(1,A) 1lies on HI(A). Since u(x,A)
satisfies the boundary condition at x = 0, we see that A 1Is an eigenvalue

of (1.1) if and only if U(1,A) 1lies on HI(A). On the other hand, X4 is a

critical length for a if G(xO,A) = al(A)u(xo,A)-+BI(A)u’(x0,A) = 0, which

means that U(xO,A) lies on Hl(A).
Consider the trajectory of the point U(1,A), as A 1increases from A1

to AO' U(1,A) always travels in the clockwise direction, whiie H1(A)

rotates in the counterclockwise direction, because of the monotonicity assump-

tion (M8). The number of eigenvalues less than A_. equals the number of

0

times U(1,A) crosses HI(A). A zero of wu(1l,A) corresponds to a point

where U(1,A) crosses the v-axis. By Sturm’s first comparison theorem, such

.‘”l
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zeros travel to the left in (0,1), and become interior zeros of u(x,A).

AR

<ale

Since U(1,A) never reverses direction, exactly one eigenvalue occurs between ‘g
any two consecutive zeros of u(1,A). The correction term o(A) tells us if
3 U(1,A) has crossed HI(A) after the last crossing of the v-axis. 1In .

effect, a proof of the shooting theorem can be given in this framework. )

~

Now consider the trajectory of U(x,AO), as X increases from 0 to 1

for fixed A = AO. A critical length occurs each time that U(x,AO) crosses '

LAY

Hl(AO). Thus we can count the critical lengths by counting the number of :
times that tan e(x,AO) = tan nl(lo). (See equation (5.3) and inequality
(5.4) in Scott, Shampine and Wing [16].) A zero of u(x,ho) corresponds to a !
point where U(x,AO) crosses the v-axis. As indicated above, such a cros-

sing must occur in the clockwise direction. Between two crossings of the

v-axis, U(x,lo) must cross the line HI(AO). Thus, there is a critical

»
o a8 N

length between any two zeros of u(x,ko). However, U(x.Ao) may reverse its f

oy

direction several times between two crossings of the v-axis. Therefore,
there may be many critical lengths between two zeros. On the other hand, if

Al < AO < “1' then U(x.AO) never crosses the v-axis. In this case, it may

o ss s s 1N

never Cross HI(AO), even though Al < AO. This is what happens in the

X %)
)
o

example (6.8). This explains why the number of critical lengths N’(AO) may

Al O £

? be slightly smaller than N(AO), or a great deal larger than N(Ao).
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Appendix

In this appendix, we shall prove some facts about the convergence of
approximate eigenvalues. The main facts are that, as h—0, the approximate
eigenvalues converge to the true eigenvalues, and to nothing else. Theorems
A.1 and A.2 make this statement precise. These facts were used in §4, especi-
ally in the proof of Lemma 4.1, and the second proof of the shooting theorem.
We are including these proofs here for the sake of completeness. For a fixed

value of A, consider the linear eigenvalue problem

(p(x,A)u’)’ + q{x,A)u + pu =0, for 0 < x <1,

"

(A.1) aO(A)u(O) + BO(A)u'(O) 0,

al(A)u(l) + Bl(A)u’(l) 0.

Here the eigenvalue is u. The weak form of the equation is

(A.2) B(A;u,v) = u<u,v>, for all v e Hl[O.ll.

1
where B(A;u,v) 1is the energy inner product (3.1), and <u,v> = I uvdx. The
0

monotonicity conditions (M1) - (M4) imply that B(A;u,u) is a strictly
decreasing function of A. By the variational characterization of elgen-

values, the kth eigenvalue uk(a) is a continuous, strictly decreasing

function of A. The kth eligenvalue Ak of (1.1) is the unique zero of
uk(A).

We shall distinguish between two discrete problems: The pure finite
element discretization, where the integrals are not replaced by quadratures;
and our discretization (3.3) and (3.7), where the integrals are replaced by
quadratures. Each of these corresponds to a linear eigenvalue problem. The

weak formulation of the pure finite element discretization is: Find u e Sh'

such that

48
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(A.3) B(A;u,v) = uh<u.v>, for all v € Sh'

The corresponding equation for our discretization is

(A.4) Bh(A;u,v) = uh<u,v>h, for all v € Sh’

where Bh(x;u,v) is obtained from B(A;u,v) by replacing the integrals by

quadratures (as indicated in §3), and <u,v>h is the trapezold rule quadra-
1

ture for I uv dx. If (1.1) satisfies the monotonicity assumptions (M1)-(M4),
0

then the eigenvalues My h(A) of (A.3) and ﬁk h(A) of (A.4) are continuous,

strictly decreasing functions of A. The kth eigenvalue Xk h of our dis-

cretization (3.7) is the unique zero of ﬁk h(A).

The next two lemmas estimate the errors Iuk(A)-uk h(A)I and

b, () - ﬁk NeSIE

Lemma A.1. Let A1 <A <A < A2. For each integer k > 0, there is a

(A s Ch2. for A’ < A < A",

constant C = C(k) > 0, so that ka(%)--uk,h
Proof. Let u = uk(x.l) denote an eigenfunction of (A.2) corresponding to
the eigenvalue pu, (1) (such that |u | = 1). It is known that
k k" 1
H [0,1]

(A.5) i, ) = Q)] < € Anf llu - vi®) ,

’ ves, H™[0,1]
for A’ £ A < A", where C is a constant which depends only on the coeffi-

1

cient functions in (1.1) (see Babuska, Osborn [3]). It is also known from

finite element approximation theory (see Ciarlet [8]) that

(A.8) inf Jlu, - vi < C,hliu, | .
ves, © #0112 K01
. [ _1 v
Furthermore, (A.1) implies that uy Blp uk-+(q+uk)uk], therefore

50
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RVl <C,, for A/ £ A < A”, and
k20,11 3
(A.7) lla, | £C,, for A <A <A”.
K'¥ro,11 4
Inequalities (A.5), (A.86), (A.7) imply
2
- < I < ”
(A.8) ka’h(l) uk(A)I < Ch®, for A’ <A < A“.
Q.E.D.
We shall now consider the error Iuk h(A -ﬁk h(7«)|. caused by the
quadratures. We shall use the modulus of continuity mf(a) of a contlinuous
function f(x). Recall that mf(a) = sup |f(x)-f(y)l. If f(x) 1is con-
Ix-yl<8
tinuous on a compact interval, then 1lim mf(é) = For a function such as
8-0
q(x,2), which is continuous on [0,1]x[A’,A”],
m (8,A) = sup |gq(x,A) ~q(y,A)| satisfies: 1lim m (8,A) = 0 uniformly for
d Jx-y] <5 50
A S A< A", Define m (8) = sup m (3,A). Then 1lim m_(8) = Since
q A’ <ASA” 50
ggéglél is continuous, there is a constant = A(A’,A”), so that
mp(G,A) S A8, for A’ £ A 2 A”. Thus mp(5) < Ad
Lemma A.2. Let A1 <A <A < A2. For each integer k > O, there is a
function w(8) = wk(é), defined for & 2 0, such that
(1) 1lim w(s) = and
3-0
(2) luk'h(h)-uk'h(?\)l < w(h), for A" S A < A”.
Proof. We shall use the Rayleligh quotients
B, (A;u,u)
_ B(asu,u) =, o _"h7r ™
(Ag) R(A,U) = W’ R(A,u) = <u,u>h .
for A £ A S A", ue Sh'
51
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The eigenvalues (A) are determined by

M. h

(A.10) min max R(A;u),
dimU=k ueU

(A) min max R(A;u),
dimU=k ueU

(A.11) ﬁk b

where U 1is a subspace of S We may assume that

h'

(A.12) w,w = 1, ||u||21 <M and |ROA;u)| €M
Hl(0,1]

in (A.10). Under these assumptions, we shall estimate IR(A;u)-ﬁ(A;u)I. We

shall use the notations

- - %ﬁ%%% p(0,A)u(0)2 + %f%%% p(1,2)u(1)2,

1 1
f p(x,A)u’ (x)2dx, F = f q(x, A)u(x)2dx,
0 0

1
I u(x)zdx.
0

(Under our assumptions, G = 1, but we shall not use this until later.) Let
E denote the midpoint quadrature of E, and let F,G denote the trapezolid

quadratures of F,G, respectively. Furthermore, let

(A.14)
Note that

D+E-F

(A.15) R(A;u) = G

D+E-F _ D+(E+e)-(F+f)
- G+g *

Thus R(A;u) = Using the Taylor expansion,

[1__—8_—]'
G(1+6)2

L)
D

»

’

’
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where 6 lies between 0 and g, we obtailn

R(A;u) = én - —E __1(D+(Eve)-(F+f)]
G(1+8)

21-—8 _)(e-f).

_DE-F_ ¢ [D+E-F] !

¢ eyl C ) G g140)?
Using (A.12), this implies
(A.16) IROuw) -Rw) | s —BLyej1- & jje-1l,
(1+0) (1+8)
where 6 lies between O and g. We shall now estimate |e|,[f], and Igl.

A function u e Sh is continuous and plecewise linear on [0,1]. On the

interval [xi,x1+1]. ul(x) = ul-rui(x—xi), where u, = u(xi) and
uj = (ui+1—ui)/h. By definition
1 n-1 n-1
E = [ ponw (0% = :E:(ui)zjxi+lp(x,k)dx, and E = :E:(ui)zp‘ ,(\)h.
!
0 1=0 %y 1=0 2
n-1
- 2 i+
Therefore e = E-E = (ul) (pll(h)-p(x.k))dx. and
.1
1=0 Xy 2
n-1 n-1 1
fe] € m (E)hZE:(uf)z. Furthermore, h (u’)2 = I u'(x)zdx < ||u|i2 <M
p2 i L 0 1o, 1]
i=0 i=0 ’
h A
(by (A.12)), and m _(5) € zh. Therefore
p 2 2
(A.17) lel s gﬂh.

1, gt 1+1 2
We shall consider |gl next. G = j u dx = :E: [ui+u;(x-xi)] dx =
0 1=0 *i
n-1 n-1 3 n-1 n-1
h 2 2 _h 2 2 _h I\ 2 = _h 2 2
h :E:(u1+uiui+1+u1+1) -2 :E:(ui+ui+l) n :E:(ul) . G=2 :E:(ui+ui+l).
i=0 i=0

i=0 i=0

n-1
= l"l:3 ;12 M.h2
Therefore g = G-G = 5 (ui) < gh Thus we have shown
i=0
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R, 4
] (A. 18) 0 <g=s gh -
"
' Now consider |f|. Note that there is a value Ei = 61(A). such that
Lr
g X5 < Ei < X541 and Ixi+1 q(x,A)u(x)de = q(gi,A)Ix1+1 u(x)zdx. Denote
.- X X
L | i
4 n-1
L - 1 2 - 141 2
: q; = q(gi,h), while q = q(xi,A). F = I qlx,A)u(x)"dx = zz:qi u(x)"dx
,. 0 x
i= i
| n-1 n-1 3 n-1
b - Y3, B, el =2 Z& (WPru 2 ) -0 Za (u)2
M 1371 i i+1 2 171 i+l 6 171
o} 1=0 1=0 i=
n-1
[ © - h 2 2
- F=3 Z(qi“1+q1+1“1+1)'
.. n- 3 n-1
rore it + it} £ a0
R f 5 (q1 qi)u1 + (q1+1 ql)u1+1 *5 qi(ui) . Let
+ i=0 1=0
‘-
C h 2 2 h 1 2
.' Q= max lqeA)l. Then Ifl s m(n)-3 Y (wleu )+ g @ [ w0 s
? 0<x<1 q 0
o A SASA”
# n-1
- M 2 _ MQ 2 MQ 2
. m (h)h :E:(u *uu, U i+1) & h® = m (h)BI u(x) dx+6 (h) ‘5
¥ 10
‘ff We have shown
o (A.19) I£] < 3m (h) + 2@ 2,
R q
",
N Inequalities (A.16) - (A.19) imply
- (A.20) [R(A;u) -R(A;u)| € w(h), for A’ <A S A",
where
: M2 M 2. MA MQ 2
~,
x
- Equations (A.10) and {A.11) now imply
L "
> luk’h(k)-'uk'h(A)l < w(h), for A’ <A S A”.
W
Q.E.D
)
Ky
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o Theorem A.1. Suppose that (1.1) satisfies the monotonicity assumptions ;
’ (M1) - (M4). Then for each elgenvalue Ak of (1.1), there is an 0 > o,
," such that for 0 < g < CO’ and for small h, the discrete problem (A.4) has
3
Ny -
" 3 -
:‘. a unique eigenvalue Ak,h in the interval (Ak e,?\kﬂ:). |
P )
Proof. Let l\1 <A< Ak < A" < A2. Lemmas A.1 and A.2 imply that
A. -
:_ (A.22) |uk’h(7\) -uk(AH < zk(h), for A’ £ A S AY,
- _ 2 _
where zk(h) = wk(h) +C(k)h™. Let z(h) = max(zk_l(h),zk(h),zkﬂ(h)). Then
) for J = k-1,k,k+1, '
" _ :
} - < ’ < ” J
' (A.23) luj’h(A) uJ(A)I < z(h), for A’ S A S A" )
i
" Note that 1lim z(h) = O. 4
h-0
: Now since Ak is an eigenvalue of (1.1), uk(Ak) = 0. Since pk(A) is
. a simple eigenvalue, p.k_l(kk) <0< ”k+1uk)' Let
- m = min(ka_l(lk)l.ukﬂ(kk)), and choose €4 > 0 small enough so that
-
“ 2 2 - < < .
- ka_l(h)l m/2 and uk+1(7\) 2 m/2 for Ak g A Ak+co Let
o
b 0 <e < g, The monotonicity assumptions (M1) - (M4) imply that uk(h) is b
: strictly decreasing. Therefore uk(Ak—c) >0 > uk(Akﬂ:). Now choose ho
N
Jy
:’_‘ small enough so that )
(A.24) z(h) € m/4, for 0 < h < hO’ .
e
k (A.25) uk(kk-c) ~z(h) >0, for 0 < h« ho,
N
RS and
WX
" :
> (A.26) uk(hkﬂ:)*—z(h) <0, for 0 < h¢« ho. :
- .
L. .
N The inequalities (A.23) - (A.26) imply (for 0O < h < ho)
. ]
b (A.27) “k,huk—C) > 0, pk'h(lkﬂ:) < 0,
A
V' "
N ,
"y 55
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(A) <0, for A -€£ <A

He-1,n Kk

and

(A.29) (A) >0, for A - S A £ A +e.

He+1,n K K

This implies that ﬁk h(A) has a zero Xk h in (Ak—c,kk+£), and for

i # k, {A) has no zero in (Ak—e,hk+e). Q.E.D.

Hin
Remark. If (1.1) satisfies the monotonicity assumptions (Mi) - (M4), then the

pure finite element eigenvalue {(A) 1is a strictly decreasing function.

Mg h

Let Ak h be the unique zero of e h(A). The minimax principle implies that

(A) (A), and therefore A, £ A .. These facts may not be true for

k = k,h
(A) and Ak,h' If Ak k h is always true, then Theorem 4.3 is also

valid in the case that A 1is an eigenvalue of (1.1).

He. n

“k,h

Theorem A.2. Let A, < A, < A,, and suppose that A is not an elgenvalue

1 0 2 0
of (1.1). Then there is an € > 0, such that for small h, the discrete

problem has no eigenvalue in the interval (Ao-c,Ao+c).

Proof. If the statement is false, then there is a sequence hn—+0 and

eigenvalues Ak h of the discrete problem, so that Xk h —eAO. Let
n’ n n’ n

u_(x) be an eigenfunction corresponding to x (with jlu_| = 1).
n k ,h n .1
n''n H'[0,1]

;u ,v) =0, for all veS . Since the u_ are bounded in
k ,h n h n
n n n n

Thus Bh (A

H1[0,1], there is a subsequence (which we again denote un) which has a weak

limit wu. in H1[0,1]. Since h —0 and A —A., it follows that
0 n kK ,h 0

) n n

B(Ao;uo,v) =0 for v e LJSh . Since LJSh is dense in H1[0,1], this

n n

implies that B(A uO,v) =0 for all v e H1[0,1]. But this means that AO

is an eigenvalue of (1.1). Q.E.D.

'\- "-),"u ¥
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